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(i) non-FIFO, 
 
(ii) FIFO, 

(iii) causal order, and 

(iv) synchronous order. 

 

 
 

 MESSAGE ORDERING PARADIGMS  
 

Notations 
 

We model the distributed system as a graph (N, L). The following notation is used to refer to 
messages and events: 

 

 When referring to a message without regard for the identity of the sender and receiver 
processes, we use mi. For message mi, its send and receive events are denoted as si and 
ri, respectively. 

 More generally, send and receive events are denoted simply as s and r. When the 
relationship between the message and its send and receive events is to be stressed, we 
also use M, send(M) , and receive(M) respectively. 

 
For any two events a and b, where each can be either a send event or a receive event, the 
notation a b denotes that a and b occur at the same process, i.e., a Ei and b Ei for some 
process i. 

The send and receive event pair for a message is said to be a pair of corresponding events. 
The send event corresponds to the receive event, and vice-versa. For a given execution E, let 
the set of all send–receive event pairs be denoted as T = {(s,r) Ei × Ej | s corresponds to r}. 

Message ordering paradigms 
 

The order of delivery of messages in a distributed system is an important aspect of system 
executions because it determines the messaging behavior that can be expected by the 
distributed program. 

Several orderings on messages have been defined: 
 

Message ordering paradigms –Asynchronous execution with synchronous 
communication –Synchronous program order on an asynchronous system –Group 
communication – Causal order (CO) – Total order. Global state and snapshot recording 
algorithms: Introduction –System model and definitions –Snapshot algorithms for 
FIFO channels 

UNIT II -Message ordering and group communication 
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Definition (A-execution) : An asynchronous execution (or A-execution) is an 

execution E for which the causality relation is a partial order. 

Definition (FIFO executions) A FIFO execution is an A-execution in which, for all (s, r) 
and (s’, r’) T, (s s’and r r’ and s s’ ) => r r’ . 

A CO execution is an a execution in which, for all (s,r) and (s’ ,r’ ) ∈ T , (r ∼ r’ and s ≺ s’ ) =⇒ r ≺ r’ 

 

 

 Asynchronous and FIFO Executions 
 

 On any logical link between two nodes in the system, messages may be delivered in 
any order, not necessarily first-in first-out. Such executions are also known as non- 
FIFO executions. , e.g., network layer IPv4 connectionless service 

 All physical links obey FIFO 
(a) A-execution that is not FIFO (b) A-execution that is FIFO 

 
 FIFO executions 

 

 

 Logical link inherently non-FIFO 
 Can assume connection-oriented service at transport layer, e.g., TCP 
 To implement FIFO over non-FIFO link: use < seq num, conn id > per message. 

Receiver uses buffer to order messages. 

Difference between Asynchronous and FIFO executions. 
 

 
 Causal order (CO) 

 

 If send events s and s’ are related by causality ordering (not physical time 
ordering), their corresponding receive events r and r’ occur in the same order 
at all common destinations. 

 If s and s’ are not related by causality, then CO is vacuously satisfied. 
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Definition: (Definition of causal order (CO) for implementations) If send(m1) send(m2) 
then for each common destination d of messages m1 and m2, deliverd(m1) deliverd(m2) 
must be satisfied. 

 

 

 
 

 
Fig  (a) Violates CO as s1 ≺ s3; r 3 ≺ r 1 (b) Satisfies CO. (c) Satisfies CO. No 
send events related by causality. (d) Satisfies CO. 

Examples 
 

 Figure (a) shows an execution that violates CO because s1 s3 and at the common 
destination P1, we have r3 r1. 

 Figure (b) shows an execution that satisfies CO. Only s1 and s2 are related by causality 
but the destinations of the corresponding messages are different. 

 Figure (c) shows an execution that satisfies CO. No send events are related by 
causality. 

 Figure (d) shows an execution that satisfies CO. s2 and s1 are related by causality but 
the destinations of the corresponding messages are different. Similarly for s2 and s3. 

 
 

 

Message arrival vs. Delivery 
 

To implement CO, we distinguish between the arrival of a message and its delivery. 

 A message m that arrives in the local OS buffer at Pi may have to be delayed until the 
messages that were sent to Pi causally before m was sent (the “overtaken” messages) 
have arrived and are processed by the application. The delayed message m is then given 
to the application for processing. 

 The event of an application processing an arrived message is referred to as a delivery 
event (instead of as a receive event) for emphasis. 

 No message overtaken by a chain of messages between the same (sender, receiver) pair. 
In Fig. (a), m1 overtaken by chain <m2, m3 > 

 CO degenerates to FIFO when m1, m2 sent by same process 

Listout the Uses of CO. 
Causal order is useful for applications requiring updates to shared data, implementing 
distributed shared memory, and fair resource allocation such as granting of requests for 
distributed mutual exclusion ,collaborative applications, event notification systems, 
distributed virtual environments 
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Definition (Empty-interval execution) An execution E is an empty-interval (EI) 
execution if for each pair of events s r ∈ T, the open interval set x ∈ E s ≺ x ≺ r in the 
partial order is empty. 

 

Other Characterizations of Causal Order 

(i) Definition (Message order (MO)) A MO execution is an execution in which, 
for all (s,r) and (s’,r’) ∈ T , s ≺ s’ ⇒ ¬(r’ ≺ r) 

Example Consider any message pair, say m1 and m3 in Figure (a). s1 s3 but ¬ r3 r1 is false. 
Hence, the execution does not satisfy MO. 

 
(ii) Another characterization of a CO execution in terms of the partial order E is 

known as the empty-interval (EI) property. 
 
 

 
 

Example: Consider any message, say m2, in Figure (b). There does not exist any event 
x such that s2 ≺ x ≺ r2. This holds for all messages in the execution. Hence, the 
execution is EI. 
For EI <s,r> there exists some linear extension < such the corresp. interval {x ∈ E | s 
< x < r} is also empty. (A linear extension of a partial order  E ≺ is any total order E 
< such that each ordering relation of the partial order is preserved.) 
An empty <s,r> interval in a linear extension implies s,r may be arbitrarily close; shown 
by vertical arrow in a timing diagram. 
An execution E is CO iff for each M, there exists some space-time diagram in which 
that message can be drawn as a vertical arrow. 

(iii) Common Past and Future 
 

Another characterization of CO executions is in terms of the causal past/future of a send event 
and its corresponding receive event. 

 
An execution E ≺ is CO if and only if for each pair of events s r ∈ T and each event e ∈ E, 

• weak common past: e ≺ r = ¬ s ≺ e ; 
• weak common future: s ≺ e =  ¬ e ≺ r . 

 
If the past of both the s and r events are identical (and analogously for the future), viz., e ≺ r 
=> e ≺ s and s ≺ e = r ≺ e, we get a subclass of CO executions, called synchronous 
executions. 
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 Synchronous execution (SYNC) 
 

Definition (Casuality in a synchronous execution) The synchronous causality relation 
on E is the smallest transitive relation that satisfies the following: 

 

We can now formally define a synchronous execution. 
 

Synchronous execution (or S-execution). 
 

 
Timestamping a synchronous execution. 

 

 
 Asynchronous Execution with Synchronous Communication 

 
Will a program written for an asynchronous system (A-execution) run correctly if run with 
synchronous primitives? 
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Defn : RSC execution An A-execution (E, ≺) is an RSC execution iff there exists a non- 
separated linear extension of the partial order (E, ≺). 

Let E be an execution. A crown of size k in E is a sequence si ri , i ∈ 0 k − 1 of pairs of 
corresponding send and receive events such that: s0 ≺ r1, s1 ≺ r2, , sk−2 ≺ rk−1, sk−1 ≺ r0. 

 

 

A-execution deadlocks when using synchronous primitives 
 

An A-execution that is realizable under synchronous communication is a realizable with 
synchronous communication (RSC) execution. 

 

 
 RSC (Realizable with synchronous communication) Executions 

 
Non-separated linear extension of (E, ≺) 

 
A linear extension of (E, ≺) such that for each pair (s,r) ∈ T , the interval { x ∈ E | s ≺ x ≺ r } is empty. 

 
Exercise: Identify a non-separated and a separated linear extension in Figs 6.2(d) and 6.3(b) 

 

 

 Checking for all linear extensions has exponential cost! 
 Practical test using the crown characterization 

Crown: Definition 
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Figure 6.5: Illustration of non-RSC A-executions and crowns. . 
 

(a) Crown of size 2. 
(b) Another crown of size 2. 
(c) Crown of size 3. 

 
 

 

 
Crown Test for RSC executions 

 

Crown criterion 
An A-computation is RSC, i.e., it can be realized on a system with synchronous 
communication, iff it contains no crown. 

 
Crown test complexity: O(|E|) (actually, # communication events) 

 
Timestamps for a RSC execution 
(E, ≺) is RSC iff there exists a mapping from E to T (scalar timestamps) such that 

 for any message M, T(s(M)) = T(r (M)) 
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 for each (a, b) in (E × E) \ T , a ≺ b =⇒ T(a) < T(b) 
 

 Hierarchy of Message Ordering Paradigms 
 

 An A-execution is RSC iff A is an S-execution. 
 RSC ⊂ CO ⊂ FIFO ⊂ A. 
 More restrictions on the possible message orderings in the smaller classes. The degree 

of concurrency is most in A, least in SYN C. 
 A program using synchronous communication easiest to develop and verify. A 

program using non-FIFO communication, resulting in an A-execution, hardest to 
design and verify. 

 
 Simulations: 
Async Programs on Sync Systems 

 

RSC execution: schedule events as per a non-separated linear extension 
 adjacent (s,r) events sequentially 
 partial order of original A-execution unchanged 

If A-execution is not RSC: 
 partial order has to be changed; or 
 model each Ci,j by control process Pi,j and use sync communication (see Fig 6.8) 
 Enables decoupling of sender from receiver. 
 This implementation is expensive. 

 
 

 

Simulations: Synch Programs on Async Systems 
 

 Schedule msgs in the order in which they appear in S-program 
 partial order of S-execution unchanged 
 Communication on async system with async primitives 
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2.3 Sync Program Order on Async Systems 

* [G1 −→ CL1 G2 −→ CL2 · · · Gk −→ CLk ] 

 

When sync send is scheduled:
o wait for ack before completion 

 
 

Deterministic program: repeated runs produce same partial order 
 Deterministic receive ⇒ deterministic execution ⇒ (E ,≺) is fixed 

Nondeterminism (besides due to unpredictable message delays): 
 Receive call does not specify sender 

Multiple sends and receives enabled at a process; can be executed in interchangeable order 
Deadlock example of Fig 6.4 

If event order at a process is permuted, no deadlock! 
How to schedule (nondeterministic) sync communication calls over async system? 

Match send or receive with corresponding event 
Binary rendezvous (implementation using tokens) 

 

Token for each enabled interaction 
Schedule online, atomically, in a distributed manner 
Crown-free scheduling (safety); also progress to be guaranteed 
Fairness and efficiency in scheduling 

 Rendezvous 
 

One form of group communication is called multiway rendezvous, which is a synchronous 
communication among an arbitrary number of asynchronous pro-cesses. All the processes 
involved “meet with each other,” i.e., communicate “synchronously” with each other at one 
time. The solutions to this problem are fairly complex, and we will not consider them further 
as this model of syn-chronous communication is not popular. The rendezvous between a pair 
of processes at a time, which is called binary rendezvous as opposed to the multiway 
rendezvous. 

Support for binary rendezvous communication was first provided by programming languages 
such as CSP and Ada. We consider here a subset of CSP. In these languages, the repetitive 
command (the ∗ operator) over the alternative command (the operator) on multiple guarded 
commands (each having the form Gi −→ CLi) is used, as follows: 

 

Each communication command may be a part of a guard Gi, and may also appear within the 
statement block CLi. A guard Gi is a boolean expression. If a guard Gi evaluates to true then 
CLi is said to be enabled, otherwise CLi is said to be disabled. A send command of local 
variable x to process Pk is denoted as “x ! Pk.” A receive from process Pk into local variable x 
is denoted as “Pk ? x.” Some typical observations about synchronous communication under 
binary rendezvous are as follows: 

For the receive command, the sender must be specified. However, multiple recieve 
commands can exist. A type check on the data is implicitly performed. 

Send and received commands may be individually disabled or enabled. A command is 
disabled if it is guarded and the guard evaluates to false. The guard would likely contain 
an expression on some local variables. 
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Synchronous communication is implemented by scheduling messages under the covers 
using asynchronous communication. Scheduling involves pairing of matching send and 
receive commands that are both enabled. The communication events for the control 
messages under the covers do not alter the partial order of the execution. 

 
The concept underlying binary rendezvous, which provides synchronous communication, 
differs from the concept underlying the classification of synchronous send and receive 
primitives as blocking or non-blocking. Binary rendezvous explicitly assumes that multiple 
send and receives are enabled. Any send or receive event that can be “matched” with the 
corresponding receive or send event can be scheduled. This is dynamically scheduling the 
ordering of events and the partial order of the execution. 

 Algorithm for binary rendezvous 
 

These algorithms typically share the following features 
• At each process, there is a set of tokens representing the current interactions 

that are enabled locally. 
• If multiple interactions are enabled, a process chooses one of them and tries 

to “synchronize” with the partner process. 

The problem reduces to one of scheduling messages satisfying the following constraints: 
 

Schedule on-line, atomically, and in a distributed manner, i.e., the schedul-ing code at 
any process does not know the application code of other processes. 

Schedule in a deadlock-free manner (i.e., crown-free), such that both the sender and 
receiver are enabled for a message when it is scheduled. 

Schedule to satisfy the progress property (i.e., find a schedule within a bounded number 
of steps) in addition to the safety (i.e., correctness) property. 

 

Additional features of a good algorithm are: (i) symmetry or some form of fairness, i.e., 
not favoring particular processes over others during scheduling, and (ii) efficiency, i.e., 
using as few messages as possible, and involving as low a time overhead as possible. 

We now outline a simple algorithm by Bagrodia that makes the following assumptions:

1. Receive commands are forever enabled from all processes. 
 

2. A send command, once enabled, remains enabled until it completes, i.e., it is not 
possible that a send command gets disabled (by its guard getting falsified) before the 
send is executed. 

 
3. To prevent deadlock, process identifiers are used to introduce asymmetry to break 

potential crowns that arise. 
 

4. Each process attempts to schedule only one send event at any time. 
 

The algorithm illustrates how crown-free message scheduling is achieved on-line. 
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The message types used are: (i) M, (ii) ack(M), (iii) request(M), and (iv) permission(M). A 
process blocks when it knows that it can successfully synchronize the current message with the 
partner process. Each process maintains a queue that is processed in FIFO order only when the 
process is unblocked. When a process is blocked waiting for a particular message that it is 
currently synchronizing, any other message that arrives is queued up. 

 
Execution events in the synchronous execution are only the send of the message M and receive 
of the message M. The send and receive events for the other message types – ack(M), 
request(M), and permission(M) which are con-trol messages – are under the covers, and are 
not included in the synchronous execution. The messages request(M), ack(M), and 
permission(M) use M’s unique tag; the message M is not included in these messages. We use 
cap-ital SEND(M) and RECEIVE(M) to denote the primitives in the application execution, the 
lower case send and receive are used for the control messages. 

The algorithm to enforce synchronous order is given in Algorithm 6.1. The key rules to prevent 
cycles among the messages are summarized as follows and illustrated in Figure 6.9: 

 

To send to a lower priority process, messages M and ack(M) are involved in that order. The 
sender issues send(M) and blocks until ack(M) arrives. Thus, when sending to a lower 
priority process, the sender blocks waiting for the partner process to synchronize and send 
an acknowledgement. 

To send to a higher priority process, messages request(M), permission(M), and M are 
involved, in that order. The sender issues send(request(M)), does not block, and awaits 
permission. When permission(M) arrives, the sender issues send(M). 

 
Rules to prevent message cyles. 

 
(a) High priority process blocks. (b) Low priority process does not block. 
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6.4 Group communication 

 

Figure:Scheduling messages with sync communication. 
 
 

 
 

Higher prio Pi blocks on lower prio Pj to avoid cyclic wait (whether or not it is the intended 
sender or receiver of msg being scheduled) 

Before sending M to Pi , Pj requests permission in a nonblocking manner. 

1. If a message M from a higher priority process arrives, it is processed by a receive 
(assuming receives are always enabled) and ack(M ) is returned. Thus, a cyclic wait is 
prevented. 

2. Also, while waiting for this permission, if a request(M ) from a lower priority process 
arrives, a permission(M ) is returned and the process blocks until M actually arrives. 

Note: receive(M0) gets permuted with the send(M) event 
 

 

A message broadcast is the sending of a message to all members in the distributed system. The 
notion of a system can be confined only to those sites/processes participating in the joint 
application. Refining the notion of broadcasting, there is multicasting wherein a message is 
sent to a certain subset, identified as a group, of the processes in the system. At the other 
extreme is unicasting, which is the familiar point-to-point message communication. 

 
Broadcast and multicast support can be provided by the network protocol stack using variants 
of the spanning tree. This is an efficient mechanism for distributing information. However, the 
hardware-assisted or network layer protocol assisted multicast cannot efficiently provide 
features such as the following: 

• Application-specific ordering semantics on the order of delivery of messages. 

• Adapting groups to dynamically changing membership. 
 

• Sending multicasts to an arbitrary set of processes at each send event. 

• Providing various fault-tolerance semantics. 
 

If a multicast algorithm requires the sender to be a part of the destination group, the multicast 
algorithm is said to be a closed group algorithm. If the sender of the multicast can be outside 
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6.5 Causal order (CO) 

 

 

the destination group, the multicast algorithm is said to be an open group algorithm. Open 
group algorithms are more general, and therefore more difficult to design and more expensive 
to implement, than closed group algorithms. Closed group algorithms cannot be used in several 
scenarios such as in a large system (e.g., on-line reservation or Internet banking systems) where 
client processes are short-lived and in large numbers. It is also worth noting that, for multicast 
algorithms, the number of groups may be potentially exponential, i.e., O(2n), and algorithms 
that have to explicitly track the groups can incur this high overhead. 

Two popular orders for the delivery of messages were proposed in the context of group 
communication: causal order and total order. 

 

 

Causal order has many applications such as updating replicated data, allo-cating requests in a 
fair manner, and synchronizing multimedia streams. 

The use of causal order in updating replicas of a data item in the system. 

Consider Figure 6.11(a), which shows two processes P1 and P2 that issue updates to the three 
replicas R1 d , R2 d , and R3 d of data item d. Message m creates a causality between send m1 
and send m2 . If P2 issues its update causally after P1 issued its update, then P2’s update should 
be seen by the replicas after they see P1’s update, in order to preserve the semantics 

 

Figure 6.11: (a) Updates to 3 replicas. (b) Causal order (CO) and total order violated. 
(c) Causal order violated. 

of the application. (In this case, CO is satisfied.) However, this may happen at some, all, or 
none of the replicas. Figure 6.11(b) shows that R1 sees P2’s update first, while R2 and R3 see 
P1’s update first. Here, CO is violated. Figure 6.11(c) shows that all replicas see P2’s update 
first. However, CO is still violated. If message m did not exist as shown, then the executions 
shown in Figure 6.11(b) and (c) would satisfy CO. 

The following two criteria must be met by a causal ordering protocol: 
 
 

• Safety In order to prevent causal order from being violated, a message M that arrives at a 
process may need to be buffered until all system wide messages sent in the causal past of the 
send M event to that same destination have already arrived. 

Therefore, we distinguish between the arrival of a message at a process (at which time it is 
placed in a local system buffer) and the event at which the message is given to the application 
process (when the protocol deems it safe to do so without violating causal order). The arrival 
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(Propagation Constraint I) it is not known that the message M is delivered to d, and 

(Propagation Constraint II) it is not known that a message has been sent to d in the causal 
future of Send M , and hence it is not guaranteed using a reasoning based on transitivity that 
the message M will be delivered to d in CO. 

 

of a message is transparent to the application process. The delivery event corresponds to the 
receive event in the execution model. 

• Liveness A message that arrives at a process must eventually be delivered to the process. 
 

The Raynal–Schiper–Toueg algorithm (RST) 
 

 

 Optimal KS Algorithm for CO: Principles 

Delivery Condition for correctness: 

Msg M that carries information “d ∈M.Dests”, where message M was sent to d in the causal 
past of Send(M*), is not delivered to d if M has not yet been delivered to d . 

Necessary and Sufficient Conditions for Optimality: 

An optimal CO algorithm stores in local message logs and propagates on messages, 
information of the form “d is a destination of M” about a message sent in the causal past, as
long as and only as long as: 

 

 

The Propagation Constraints also imply that if either (I) or (II) is false, the information 
“d ∈ M Dests” must not be stored or propagated, even to remember that (I) or (II) has 
been falsified. 
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Stated differently, the information “d ∈ Mi,a Dests” must be available in the causal future of 
event ei a, but:

• not in the causal future of Deliverd Mi a , and 
 

• not in the causal future of ek c, where d ∈ Mk, c Dests and there is no other message 
sent causally between Mi,a and Mk, c to the same destination d. 

In the causal future of Deliverd (Mi,a) , and Send(Mk,c), the information is redundant; elsewhere, 
it is necessary. Additionally, to maintain optimality, no other information should be stored, 
including information about what messages have been delivered. 

As information about what messages have been delivered (or are guaranteed to be delivered 
without violating causal order) is necessary for the Delivery Condition, this information is 
inferred using a set-operation based logic. 

 

 
The message M is sent by process i at event e to process d. The information “d ∈ M Dests”: 

• must exist at e1 and e2 because (I) and (II) are true; 
• must not exist at e3 because (I) is false; 
• must not exist at e4 e5 e6 because (II) is false; 
• must not exist at e7 e8 because (I) and (II) are false. 

Information about messages (i) not known to be delivered and (ii) not guaranteed to be 
delivered in CO, is explicitly tracked by the algorithm using (source, timestamp, 
destination) information. 
The information must be deleted as soon as either (i) or (ii) becomes false. The key 
problem in designing an optimal CO algorithm is to identify the events at which (i) or 
(ii) becomes false. 
Information about messages already delivered and messages guaranteed to be delivered 
in CO is implicitly tracked without storing or propagating it, and is derived from the 
explicit information. 
Such implicit information is used for determining when (i) or (ii) becomes false for the 
explicit information being stored or carried in messages. 
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Optimal KS Algorithm for CO: Code (1) 
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Optimal KS Algorithm for CO: Code (2) 
 

Information Pruning 
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2.6 Total Message Order 

 

 

Example 
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 Three-phase Algorithm 
 

A distributed algorithm to implement total order and causal order of messages 
 

The three phases of the algorithm are first described from the viewpoint of the sender, and then 

from the viewpoint of the receiver. 

Sender 

Phase 1 In the first phase, a process multicasts (line 1b) the message M with a locally unique 

tag and the local timestamp to the group members. 

Phase 2 In the second phase, the sender process awaits a reply from all the group members 

who respond with a tentative proposal for a revised timestamp for that message M . The await 

call in line 1d is non-blocking, i.e., any other messages received in the meanwhile are 

processed. Once all expected replies are received, the process computes the maximum 

of the proposed timestamps for M , and uses the maximum as the final timestamp. 

Phase 3 In the third phase, the process multicasts the final timestamp to the group in line (1f). 
 
 

Receivers 

Phase 1 In the first phase, the receiver receives the message with a tentative/proposed 

timestamp. It updates the variable priority that tracks the highest proposed timestamp (line 2a), 

then revises the proposed timestamp to the priority, and places the message with its tag and the 

revised timestamp at the tail of the queue temp_Q (line 2b). In the queue, the entry is marked 

as undeliverable. 

Phase 2 In the second phase, the receiver sends the revised timestamp (and the tag) back to the 

sender (line 2c). The receiver then waits in a non-blocking manner for the final timestamp 

(correlated by the message tag). 

Phase 3 In the third phase, the final timestamp is received from the multicaster (line 3). The 

corresponding message entry in temp_Q is identified using the tag (line 3a), and is marked as 

deliverable (line 3b) after the revised timestamp is overwritten by the final timestamp (line 3c). 

The queue is then resorted using the timestamp field of the entries as the key (line 3c). As the 

queue is already sorted except for the modified entry for the message under consideration, that 

message entry has to be placed in its sorted position in the queue. If the message entry is at the 

head of the temp_Q, that entry, and all consecutive subsequent entries that are also marked as 

deliverable, are dequeued from temp_Q, and enqueued in deliver_Q in that order (the loop in 

lines 3d–3g). 
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Three-phase Algorithm Code 
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6.7 Global state and snapshot recording algorithms 

 

 

Example and Complexity 
 

Complexity: 
 

This algorithm uses three phases, and, to send a message to n− 1 processes, it uses 3(n− 1) 
messages and incurs a delay of three message hops. 

 
 
 

 
 

Introduction 
 

• Recording the global state of a distributed system on-the-fly is an important 
• paradigm. 
• The lack of globally shared memory, global clock and unpredictable message 

delays in a distributed system make this problem non-trivial. 

 System model 
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Models of communication 
 

 
 Consistent global state 

 

 
• In a consistent global state, every message that is recorded as received is also recorded 

as sent. Such a global state captures the notion of causality that a message cannot be 
received if it was not sent. 

• Consistent global states are meaningful global states and inconsistent global states are 
not meaningful in the sense that a distributed system can never be in an inconsistent 
state. 
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 Interpretation in terms of cuts 
 

 
 

 
 Issues in recording a global state 
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 Chandy Lamport Algorithm 
 

 

 
The algorithm 

 

6.8 Snapshot algorithms for FIFO channels 
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Correctness and Complexity 
 

 
 Properties of the recorded global state 

 

 
The recorded global state may not correspond to any of the global states that occurred during 
the computation. Consider two possible executions of the snapshot algorithm (shown in Figure 
4.3) for the money transfer example of Figure 4.2: 
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(Markers shown using dashed-and-dotted arrows.) Let site S1 initiate the algorithm just after 
t1. Site S1 records its local state (account A = $550) and sends a marker to site S2. The marker 
is received by site S2 after t4. When site S2 receives the marker, it records its local state 
(account B = $170), the state of channel C12 as $0, and sends a marker along channel C21. When 
site S1 receives this marker, it records the state of channel C21 as $80. The $800 amount in the 
system is conserved in the recorded global state, 

 
A= $550 B = $170 C12 = $0 C21 = $80 

 
(Markers shown using dotted arrows.) Let site S1 initiate the algorithm just after t0 and before 
sending the $50 for S2. Site S1 records its local state (account A = $600) and sends a marker 
to site S2. The marker is received by site S2 between t2 and t3. When site S2 receives the 
marker, it records its local state (account B = $120), the state of channel C12 as $0, and sends a 
marker along channel C21. When site S1 receives this marker, it records the state of channel 
C21 as $80. The $800 amount in the system is conserved in the recorded global state, 

 
A= $600 B = $120 C12 = $0 C21 = $80 

 
In both these possible runs of the algorithm, the recorded global states never occurred in the 
execution. This happens because a process can change its state asynchronously before the 
markers it sent are received by other sites and the other sites record their states. 

A physical interpretation of the collected global state is as follows: consider the two instants of 
recording of the local states in the banking example. If the cut formed by these instants is 
viewed as being an elastic band and if the elastic band is stretched so that it is vertical, then 
recorded states of all processes occur simultaneously at one physical instant, and the recorded 
global state occurs in the execution that is depicted in this modified space– time diagram. This 
is called the rubber-band criterion. 
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QUESTIONS: 
 

1. Explain Asynchronous execution with synchronous communication 

2. Discuss Synchronous program order on an asynchronous system 

3. Explain the Algorithm for binary rendezvous (or) Bagrodia’s Algorithm. 

4. Dicuss the Raynal–Schiper–Toueg algorithm (RST) (2.5.1) 

5. Explain group communication in detail. 

6. Explain Optimal KS Algorithm for CO: (2.5.2) 

7. Explain the distributed algorithm to implement total order and causal order of 

messages (or) Three-phase Algorithm 

8. Explain Snapshot algorithms for FIFO channels or Chandy Lamport Algorithm 


